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T H E  SIMPLEST M O D E L S  AND SIMPLIFIED M E T H O D S  F O R  

D E T E R M I N I N G  T H E  N O N L I N E A R  S H E A R  C R E E P  O F  C L A Y  SOILS  

S. R. Mestchyan UDC 624.131.22 

The Drucker-Prager diagram of an ideal elastoplastic body [1] is used to describe the dependence of a 
shear stress r on a clay-soil shear strain 7 with allowance for the variability of a density-humidity state under 
the action of normal stresses az. In the diagram of [1], the effect of az on the dependence 7 - r is expressed in 
terms of the change in the ul t imate shear stress 7" I (yield point), while in the diagram of S. S. Vyalov [2], it is 
expressed in terms of the change of both the elasticity modulus (linear deformation) G and the quantity r I. 

Real clay soils are characterized by the o-z-dependent shear-creep property 7t = f ( t )  and the nonlinear 
dependence 7t - r .  For o-z = coast, the 7t - r dependence is determined from one family of experimental 
shear-creep curves (Fig. 1) at various fixed times. The effect of o-z on both "it - r and 7t - t can be taken into 
account using several families of experimental shear-creep curves which are constructed at various constant 
normal stresses (o-k,i = c o n s t )  [3]. In the present paper, we consider the two simplest models and simplified 
experimental methods of determining the characteristics of the nonlinear shear creep of clay soils taking into 
account the variability of their states under the action of normal stresses o-k. 

According to the theory of hereditary creep of clay soils whose properties vary under the action of o-k, 
the expression for the shear strain variation in time 6(t - ~9, o-z) under the action of a unit shear stress r = 1 
(similarly to the strain of aging materials in [4]) has the form [3, 5] 

- 0 ,  o-z)  = 1 / a 0 ( o - k )  - o , o - k )  = 1 ~ n o ( o - k )  + - (1 )  

where 1/GO(az) is the O'k-dependent instantaneous shear-strain, ~( t  - 0, o-z) is the O'z-dependent shear creep 
measure (r  = 1), T(o-z) is a state function, ~b(t - ~) is a function of time; t is the time, and 0 is the loading 
time. 

If the instantaneous (elastic) strains are ignored because of their smallness [2], the expression for shear 
creep (with ~ = 0) has the form [3, 5] 

7t(t ,  r, o-k) = w(t ,  o-k)f(r, o-k) = qo(o-k)~b(t)f(r, o-k). (2) 

In this case, f ( r ,  o-z) is the o-z-dependent function of shear stress which takes into account the ")'t - r nonlinear 
dependence and is subject to the condition f ( r  = 1, ak) = 1. 

Expression (2), which is represented in the simplest form of writing of the aging theory, establishes 
a relationship between the shear stress, the nonlinear shear creep, time, and the normal stress. It can be 
successfully used to determine shear strains under the action of both constant and slowly increasing shear 
stresses. 

The ~/t - r dependence (Fig. la) is written, in particular, as a power function 

7,( r )  = ST (3) 

For f ( r ) ,  we then obtain 

f ( r )  = 7 t ( r ) / [7 , ( r  = 1)1 = r '~. (4) 
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As early as 1960, the au thor  elucidated that  for clay soils, the shear-creep nonlinear-strain index n does 
not actually depend on their s ta te  (of o-x) [3]. This was later confirmed by many  experiments.  In particular, in 
experiments with Kiev clay (ps = 2670 k g / m  3, p = 1920-1980 kg /m  3, w = 0.25-0.32, WL = 0.537, w/, = 0.333, 
and Ip  = 0.204) and with Novomikhailovskii  argillaceous clay (ps = 2610 k g / m  3, p = 1640-1740 k g / m  3, and 
w = 0.329) [61, the values of n (Table 1) were obtained for various o-x by means of M-5 torsion devices [5]. 

Thus, the nondependence  of the shear-stress function (4) on the s ta te  of the soil (o-x) was revealed. 
This allows one to conclude that  it suffices to have one experimental  family of shear-creep curves to determine 
/ ( r ) .  

Using such a family (Fig. la) ,  we determine the 7t - 1" dependence,  the shear-stress function f ( r ) ,  and 
the shear-creep measure w(t ,  trx = const) for a given s tate  of soil. To find the dependence  of the shear-creep 
measure on O-z, we need a family of experimental  curves of t h e  shear-creep measure  (Fig. lb) ,  from which the 
w(t )  - o-z and ~(o-z) dependences  are established. 

If, in particular, the w( t )  - o-x dependence  is represented as 

for ~(o-x), we obtain the equat ion  

o-x) = ( t ,  o-x,0) - c ( o - x  - o-x,0)  "1 ,  ( 5 )  

= 1 - C l ( o - x  - o - x , 0 ) " ' ,  ( 6 )  

subject  to the condition qo(o-x) = 1 for o-z = ~rz,0, where o-x,0 is the minimal normal  stress at which the initial 
expression for the shear-creep measure  w( t ,  o-z = o-z,0) was derived. 

From the foregoing it follows that  it is sufficient to perform a creep test  in one s ta te  of soil (o-z,0 = const) 
for not less than three twin specimens under  various shear stresses to construct  a family of shear-creep curves 
(Fig. la)  and to determine expression (2). To obtain a family of shear-creep-measure curves (Fig. lb) ,  it is 
necessary to test for creep not less than two addit ional specimens at r = 1 exposed to the stresses o-z,i=l,2... 
which differ from the stresses o-z,0. The  number  of specimens can be reduced if one uses the methods  of one 
or two experimental  curves to find a family of shear-creep curves. 

The right-hand side of Figs. 2-4 shows, as an example,  the deduct ion of expression (2) using the 
me thod  of two experimental  curves [5]. The  solid shear-creep measure curves with circles were experimental ly 
obtained,  respectively, in three s tates  (o-z = 0.15, 0.25, and 0.35 MPa)  of the 46-75 clay (ps = 2810 kg/m3; 
p = 1850 kg/m3; w = 0.41, WL = 0.555, w p  = 0.374, Ip  = 0.181, ~ = 15 ~ 40', and c = 0.012 MPa)  under 
the action of constant  and s tepwise increasing shear stresses. The left-hand side of Figs. 2-4 shows the "It - r 
curves approximated by expression (3). The  shear-stress function 

f (T)  = B,(10~-)" (7) 

that  is subject  to the condit ion f ( r  = 0.5 MPa)  = 1 is defined. In (7), r = 0.05 M P a  is regarded as a unit 
shear stress. 

Table 2 summarizes the exper imental  da ta  on the s tandard resistance to the  shear Tf,st along with the 
parameters  B, B1, and n which were ob ta ined  by testing of solid specimens of d iameter  101 mm and height 
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TABLE 1 

Soil 

Kiev clay 

Novomikhailovskii argillaceous soil 

0.30 

2.209 

az, MPa 

0.32 I 0.5 I 0.55 t 0.8 I 1.2 

n 

- -  2.00 - -  2.285 - -  

Average 

values 

2.931 
2.17 

TABLE 2 

MPa 

0.15 ~ 
0.25 I 0.083 
0.3510.111 

m 

B 

2.31 
0.0609 

B1 

27.27 
25.80 

4.77 
4.69 

0.0040 
0.0056 

0.0040 
0.0040 
0.0049 

24 mm using M-5 torsion devices. 
The dashed shear-creep curves were constructed at constant normal stresses g~ = 0.15, 0.25, and 

0.35 MPa under the action of the constant shear stresses 7" = 0.034, 0.0515, and 0.0688 MPa (Figs. 2-4) and 
were approximated by the logarithmic dependences 

7t(t) = a + blogt.  (8) 

The parameters a and b of expression (8) are also given in Table 2. 
Using (7) and (8), from (2) we derive expressions for the shear-creep measure for three states of the 

46-75 soil: 

w(t, ~rz,0 = 0.15 MPa) = 0.0286 + 0.02541og t; (9a) 

w(t, az,1 = 0.25 MPa) = 0.0035 + 0.0035 log t; (9b) 

w(t, ~rz,2 = 0.35 MPa) = 0.00125 + 0.00108 log t. (9c) 

Expressions (9) were obtained from (2), because the specimens that are characterized by different states 
of soil were not tested at the same value of the constant shear stress. To avoid this, the specimens should be 
tested in all states of the soil under the same unit shear stress. 

Using relations (7) and (9) along with the expression 7t = w(t,  a~ = const)f(7"), we plotted (the dashed 
curves on the right-hand side of Figs. 2-4) the shear-creep curves for various constant shear stresses. The solid 
curves on the right-hand side of Fig. 5 refer to the shear-creep measure and were calculated by (9), and the 
left-hand side shows the w(t) - crz curve. This curve was approximated by relation (5) to derive the expression 
for a state function of type (6) 

~(~z) = 1 - 1.194(az - 0.15) ~ (10) 

subject to the condition ~(crz = 0.15 MPa) = 1. 
The dashed curves in Fig. 5 show the shear-creep measure (7" = 0.05 MPa) for Crz A = 0.25 and 

Crz,2 = 0.35 MPa and were constructed using the expression w(t, ~ )  = w(t, crz,o)~(az) with allowance for (9a) 
and (10). 

Using expressions f (r, ~rz,0 = 0.15 MPa) (7) and w (t, az,0 = 0.15 MPa) (9a) for one state of the soil 
(see Fig. 2) and also the state function (10) defined from the family of creep-measure curves, we write relation 
(2) as 

"yt(t,7",~rz) = ~(~rz)W(t,~rz = 0.15 MPa) f(r,~rz = 0.15 MPa) 

= [1 - 1.194 (cr: - 0.15)~ + 0.0254 log t)27.88 (10r) 4s. (11) 
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Fig. 3 

The expressions for the shear creep were derived from relation (11) for ~rz = 0.25 and 0.35 MPa for various 
values of the constant shear stress. The curves plotted using these expressions practically coincide with those 
constructed using the method of two experimental curves for these states of soil (the dashed curves in Figs. 
3 and 4). 

It has been verified experimentally [5-8] that apart from the nondependence of the shear-stress function 
f (v )  on the clay-soil state Gz, its shear-creep strains, determined at the same levels of shear stress v/vl ,s t  
(Vf, st is the standard shear resistance), are also independent of az. Thus, a generalized equation for the shear 
creep has the form [5, 6] 

= (12) 

where f ( r / r L , t )  is a shear-stress function, subject to the condition f ( r / r f , s t  = 1) = 1, co(t) is the measure of 
the unit level of shear creep, and 

rf,st = az tan~: + c. (13) 

The shear-creep measure for Ti f f , s t  = 1 is fictitious and can be used only to determine strains at 
r / r f : t  < 1. Expression (12), which is represented, as (2), in the form of writing of the aging theory, relates 
the shear stresses, the nonlinear shear strains, time, and the soil resistance to shear, and we employ it to take 
into account the variability of the state of soil under the action of a~. 

If the 7t - r /Vf ,s t  dependence is expressed by means of (3), the function of the level of shear stress 
with allowance for (13) takes the form 

f = = (14) 
c~z ta + c 

Obviously, to derive (12), it is sufficient to have both only one family of experimental shear-creep 
curves (Fig. 1) obtained by testing of specimens for various levels of shear stress and the diagram of the soil 
resistance to shear which is needed to find the parameters : and c. 

To illustrate the derivation of (12), we shall make use of the family of shear-creep curves of the 46-75 
soil which were plotted for Crz,0 = 0.15 MPa (see Fig. 2). In this case, one experimental curve was constructed 
at a constant level of shear stress r/Tf ,s t  = 0.62, and the other was plotted with a stepwise increasing level: 
"/'/':/,st = 0.4, 0.62, and 0.89. The left-hand side of Fig. 2 shows the "It - T/Tf,  st curve. For the function 
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f ( r / rLs t )  , we derived an expression of the type (14): 

f ( r /T f ,  st) = ( t i f f ,  st) 4"s. (15) 

Approximating the shear curve for v/rLs  t = 0.62 by (8), whose parameters are listed in Table 2, and 
using the function (15), we obtain the expression for the level of shear-stress measure 

w (t, r/Tf,~t = 1) = 0.045 + 0.04log t. (16) 

The shear-creep curves, constructed using relation (12) and with allowance for (15) and (16), for all 
three states of the 46-75 soil with the levels of shear stress "tiff, st = 0.4, 0.62, and 0.89 are shown by the 
dotted curves or coincide with the dashed curves in Figs. 2-4. 

We finally conclude that  the simplest models of nonlinear clay-soil shear creep (2) and (12) are 
not practically different from each other in both their complexity and the results of approximation of the 
experimental data�9 At the same time, relation (12) has some advantage over relation (2): the number of shear 
creep experiments is minimal, and the determination of the shear-resistance parameters ~o and c is of great 
importance for laboratory use. 

The proposed models are noted for a clear approach to solution of the problem, simple forms and 
methods for determining a small number of parameters, and also for an exact approximation of experimental 
data. Application of the simplified methods of one and two experimental curves to estimation of the shear 
creep of clay soils substantially reduces the scope of work and makes them applicable to laboratory practice. 

Note that taking into account the shear-stress variation with time complicates the models [4, 5], and 
the obtained results can be extended to the case of a complex stress-strain state of soils. 
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